

Stand-Alone ASIC
Bitcoin Miner

Final Report

Submission Date: December 13, 2017
Thursday 2:30 (Lab Section 5)

TA: Mochen

Prepared by:
Yash Bharatula
Michael Toner
Chinar Dhamija
Rahul Patni

1 / 56

1.Executive Summary
The underlying foundation of bitcoin mining utilizes the concept of hashing functions, a
method of compressing input data to a block of fixed size. The bitcoin transaction record
must be hashed into a block that must be verified. The notion of mining bitcoin simply
refers to the validation of these blocks, using a double SHA256 encoding algorithm.
This algorithm can be implemented in an ASIC with high efficiency, as many concurrent
processes can be accomplished at the same time.

Bitcoin and other cryptocurrencies have the potential to dominate the financial
environment in the future and competition to validate bitcoin blocks is always increasing.
ASIC designs of bitcoin mining represent the most efficient approach leading innovation
currently. ASIC implementations of these algorithms are faster than other approaches,
such as GPU and CPU mining. The concepts necessary to realize the bitcoin mining
design using the SHA256 encoding algorithm, involves: an understanding of bitcoin and
its block representations; the bitcoin implementation of its hashing algorithm; and
knowledge regarding dynamic data transfer.

A successful implementation would require the following resources:
➢ Verilog HDL Simulation and Design Synthesis Tool Chain
➢ USB bus documentation
➢ Reference Standard Cell Simulation Library for Mapped Design

Verification
➢ Reference Standard Cell Technology Library for Final Design Layout

Verification
➢ Bitcoin SHA256 Algorithm Documentation
➢ Bitcoin block description

The remainder of the proposal will be subdivided into sections regarding topic,
expressing a higher level of detail of different aspects of the design. Towards the end of
the document we include estimates of the area and timing parameters of the design and
a general schedule we will follow to complete the design.

2 / 56

2. Design Specifications

2.1. System Usage
2.1.1. System Usage Diagram

Figure 1: System Usage Diagram for Bitcoin Miner

The high-level block diagram in Figure 1 illustrates the intended use of the bitcoin miner
in a system. The CPU will talk to the miner via a USB interface. The CPU will wake the
bitcoin miner up to begin computation of a new block header on a blockchain. The CPU
will send the entire block header in just 2 USB packets. It will then wait for the miner to
calculate a valid hash of the header. The CPU will need to resend the block
occasionally to make sure the time data on the header is up to date. Once a correct
hash for the block is found, the miner will then send this hash back to the CPU to
transmit on the blockchain. The CPU can also interrupt the miner at any point by
sending an interrupt packet that will tell the bitcoin miner to stop computation of the
current block. This will usually happen if another miner has already ‘solved’ the current
block.

2.1.2. Implemented Standards and Algorithms Overview

● Bitcoin Standard
○ Double SHA-256 Hashing Algorithm
○ Cryptographic Nonce
○ Merkle Trees
○ Proof-of-work difficulty target

● USB 1.1 Interface
○ Bulk Transfer
○ NRZi Encoding
○ 12 MHz Speed

3 / 56

2.1.3. Design Pinout

Table 1: Miscellaneous Pinout Table

Signal Name Type (In/Out/Bidir) Number of Bits Description

n_rst In 1 Asynchronous
Reset. (Active Low)

clk In 1 System clock

vcc Power 1 Power Pin

gnd Ground 1 Ground Pin

Table 2: USB Mapped Slave Interface Pins

Signal Name Type (In/Out/Bidir) Number of Bits Description

d_plus Bidirectional 1 Computer Data line

d_minus Bidirectional 1 Computer Data line

vcc Power 1 Power Pin

gnd Ground 1 Ground Pin

4 / 56

2.2. Operational Characteristics
2.2.1 ​Normal Usage Design:

1. CPU sends block packet to miner
2. The miner calculating valid hash of the block
3. CPU sends new block every few seconds to make sure the time is updated
4. Wait for bitcoin miner to compute a valid hash
5. A valid hash is found is ready to transmit
6. The CPU asks the miner to transmit the valid header back
7. At any point during this the CPU can send an interrupt packet to stop all computation of

the current block header

2.2.2. SHA 256 Algorithm Description
[Source: National Institute of Standards and Technology]
The following section is a detailed description of how we are using the SHA-256
algorithm to hash. In this documentation a word is 32 bits of data.
Input: Block header to encrypt (80 bytes)
Output: SHA-256 bit hash

Step 1: Split Input Block
The Block/ Block chain will be split into 512-bit chunks. ​begin with the original header of

length L bits and append a single '1' bit

append K '0' bits, where K is the minimum number >= 0 such that L + 1 + K + 64 is a

multiple of 512. Append L as a 64-bit big-endian integer, making the total

post-processed length a multiple of 512 bits.

Step 2: Copy chunk into the message schedule array
Copy chunk into first 16 words w[0..15] of the message schedule array. The message
schedule array is 64 words long (2048 bits long).

Step 3: Initialize hash values
The hash array is an array of 8 32 bit wide words (256 bits wide in total). If we are
hashing the first chunk, initialize the hash values (h[0:7]) to first 32 bits of the fractional
parts of the square roots of the first 8 primes 2..19:
h0 := 0x6a09e667

h1 := 0xbb67ae85

h2 := 0x3c6ef372

h3 := 0xa54ff53a

h4 := 0x510e527f

h5 := 0x9b05688c

h6 := 0x1f83d9ab

h7 := 0x5be0cd19

5 / 56

Step 4: Initialize array of round constants
Initialize array k[0:64] (64x32 bits wide) to the first 32 bits of the fractional parts of the
cube roots of the first 64 primes:
k[0..63] :=

 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4,

0xab1c5ed5,

 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7,

0xc19bf174,

 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc,

0x76f988da,

 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351,

0x14292967,

 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e,

0x92722c85,

 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585,

0x106aa070,

 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f,

0x682e6ff3,

 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7,

0xc67178f2

Step 5: Extend first 16 words of the message schedule array
Extend the first 16 words into the remaining 48 words w[16..63] of the message
schedule array:
 ​ for i from 16 to 63
 s0 := (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18) xor (w[i-15] rightshift 3)

 s1 := (w[i-2] rightrotate 17) xor (w[i-2] rightrotate 19) xor (w[i-2] rightshift 10)

 w[i] := w[i-16] + s0 + w[i-7] + s1

Step 5: Initialize computation variables (a through h) to current hash values

a := h0

b := h1

c := h2

d := h3

e := h4

f := h5

g := h6

h := h7

Step 6: Perform compression algorithm
for i from 0 to 63

 S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25)

 ch := (e and f) xor ((not e) and g)

 temp1 := h + S1 + ch + k[i] + w[i]

 S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22)

 maj := (a and b) xor (a and c) xor (b and c)

 temp2 := S0 + maj

 h := g

 g := f

6 / 56

 f := e

 e := d + temp1

 d := c

 c := b

 b := a

 a := temp1 + temp2

Step 7: Add compressed chunks into current hash values
 ​h[0] := h[0] + a
 ​h[1] := h[1] + b
 ​h[2] := h[2] + c
 ​h[3] := h[3] + d
 ​h[4] := h[4] + e
 ​h[5] := h[5] + f
 ​h[6] := h[6] + g
 ​h[7] := h[7] + h

Step 8: Verify if the hash has a proper proof of work
The final hashed value, contains all separate hashes in one variable. This variable will
keep updating with every hashed chunk. Once all chunks are done hashing, we check
whether there are the same number of leading zeros as the “proof of work”. The “proof
of work” can be found in the header of the block.

For more description on the bitcoin proof of work see the developer reference on
bitcoin.org

2.2.3 Block Header Description

Table 3: Block Header Description Header
Field Purpose Data Type Field Size

Version Block version number Int32 4

hashPrevBlock Hash of the previous block
header

char array 32

hashMerkleRoot Hash based on all of the
transactions in the block

char array 32

Time Timestamp in UTC for block
creation

uint32 4

Difficulty Current target in compact format,
number of zeros to match

uint32 4

Nonce 32-bit number, various values
with which the hash is tried,
starts at 0

uint32 4

7 / 56

This is the description of the block header. Block headers are always 80 bytes. This is
what is the actual data that gets hashed with the hashing function. This header is
hashed and the leading zeros in the hash of this header is counted and compared with
the “Difficulty” that is part of the header. If they match, it is a valid block. If they don’t
match, the nonce is incremented and the header is re-hashed. This process is repeated
until there is a match. This serves as the proof-of-work that establishes that this is a
valid block.

2.3.4. Supported USB Transfer Modes
2.3.4.1. Bulk Transfers

Figure 2: Bulk Transfer Packet Order

Data can be transmitted or received serially through the data line. The bulk transfer
protocol allows for the ability to transfer large amounts of data with error free delivery.
The USB bus serves as a communication protocol that bridges the CPU with the device.
The Bulk transfer mode capabilities consist of in and out transactions. Each transaction
can be represented by the successful transference of three packets. An output
transaction begins with a token packet that specifies that it is an out packet. It is then
followed by the payload data packet. As the full speed USB bus interface runs at full
speed, or 12 MHz, the maximum size of the payload packet is 64 bytes. As bitcoin block
header is 80 bytes, it must be sent into two separate parts. The final packet of the
transaction is the ACK signal sent from the device. An in transaction consists of a
similar token packet, but receives a data payload rather than sending it. The USB

8 / 56

protocol then concludes the IN transaction with a handshake packet (ACK). Every
instance that a packet is sent, a sync byte must be sent to prevent the clock from
drifting away from the bus clock. This byte synchronizes the clock. The host either
requests an In or Out token depending on the type of information that the host requires.
The protocol replies with the corresponding data packet if successful or an error signal if
an instance fails. The bulk transfer also conducts error detection through the usage of
cyclic redundancy checks (CRCs), resulting in a linear shift register where certain bits
are Xored together. The timing waveform analysis can be found later in section ​3.2.3.3.

2.4. Requirements for Design
The first constraint for our design comes from power consumption. In order for this
module to be profitable we need to estimate how many hashes per second our design
should do to offset the power consumption of the design. Using a current price of bitcoin
at 7286 $/BTC, the cost of electricity in West Lafayette at 8.48 ¢/kWh, and a high
estimate that our module uses 2 watts of energy, we would need to calculate

Hashes per second. This would force our clock rate to be .03 nanoseconds..3443 × 109
This rate is completely unfeasible for any design and is impossible to compute even a
single addition. We feel it is more realistic to set our clock period to be 10 nanoseconds
or 100 MHz. This is the minimum speed needed to run the USB interface at full speed.
We can justify this change because it is not feasible for our miner to even be profitable
because the price of bitcoin is so volatile right now. This change would allow us to
compute a total of 750,000 hashes per second which is very high considering the
fabrication technology of .5 microns we are using. The other way to combat this would
be to increase the number of hashing modules by a significant amount. This would work
but would need a completely unrealistic amount of space making the cost of this design
very expensive to fabricate and unprofitable.

As mentioned, space is in an important factor that must be optimized when nearing the
completion of the design. The placement of registers and components must be taken
into account, along with the wiring associated with the components. For simplicity the
entire block header to be hashed is stored inside an array and is then redirected to each
hashing module. A block is a standard 640 registers, and as such this takes up a
significant portion of the overall design. This is simpler however, than to store the block
in every module and only requires that there is a lot of wiring in our project. Because of
the nature of SHA-256 the size of the wiring will also be a significant portion of our
design. Most of the algorithm is wire rearranging between the 2048 wide input to the
output for the algorithm. Wires are hard to estimate the size of until we make a full
layout of the design and should be calculated more precisely later on.

9 / 56

Pipelining was considered as a portion of the hash calculation as a way to increase the
throughput of the design but it is not a real feasible way to increase speed. It would take
an additional 2048 registers to pipeline the design at any point which would almost
double the area of a hashing module which would completely ruin the purpose of
pipelining and add unneeded complexity to the design. It would be much more efficient
to just add more hashing modules to increase throughput. We may revisit pipelining if
we come realize we do not need all 2048 registers to pipeline the design later.

3. Design Implementation
3.1 Design Architecture

Figure 3: High-Level Design Architecture for Bitcoin Miner

The architecture of this project is shown in the image above. The first main module is
the USB bus interface. This module will read and write to the CPU and gets all
necessary data to the other modules. This module will be woken up and will read a bulk
transfer packet. This packet will be sent to the packet decoder which will tell the main
controller what type of packet is being sent and will get ready to send data to the hash
module. The main controller will then be initialized with all the parameters to begin

10 / 56

https://www.draw.io/#G0By3cfcCJjUpCdGxRVDhNX1ZTQ00

hashing. The controller will start hashing of the block as it is being read in from the USB
bus. If the hash module computes a valid hash it will put the hash in the output hash
storage and will be ready to send it back to the CPU to place onto the block chain. At
any point in this process 2 things will happen. The CPU could send a new block with an
updated time parameter and the hash module will have to restart the calculation. The
other thing that could happen is that another user found a valid block first and the CPU
will tell the miner to halt all calculations and go into an idle mode.

3.2 Functional Block Diagrams
3.2.1.1 Hashing Module Block Diagram

Figure 4: Functional Diagram for the Hashing Module

How the algorithm works (brief):

● The total data is 640 bits wide
● Hash the first 512 with predetermined w values of length 256
● Hash the second 256 bits (with padded 256 bits) with the previous hash replacing

the predetermined w values
● If the output of the second hash has appropriate difficulty (leading zeros) send a

valid_hash_flag pulse
● Therefore, the bitcoin algorithm is a actually SHA256(SHA256(Block)).

The core of the hashing module is to compute a SHA-256 hash on the input data. The
input, data_to_hash, is directed the hash selection block. The hash selection block
determines whether to choose the previous hash or the new data to hash depending on
the stage of algorithm. The clear signal is used in the SHA256 block to tell it to use the
default value for prev_hash and not the previous hash. This must be asserted when we
calculate the first instance of any SHA256 algorithm.

11 / 56

https://www.draw.io/#G0BwSK0URAVqH3TzQ0UkR4MUpoV1k

This selected data is sent into the core block and and the SHA-256 block computes its
hash. The check hash block compares this hash to the difficulty to see if it is a valid
hash. It is valid then the valid_hash signal is set high and tells the main controller to be
ready to transmit this hash back to the host. This means after we have computed the
hash we have to send out_hash back into the input data to calculate the hash on that
hash.
Once we have a valid hash, we send out the hash through valid_hash which is
appended with the successful nonce value, hence valid_hash is 256+32 wide: 288 bits.

3.2.1.2 Hashing Module Timing Waveform

Figure 5: Hashing Module Timing Waveform

The hashing module initially receives data in chunks from the chunk decoder. It takes
64 clock cycles to hash one chunk. When hash select is 0 and 1, chunks 1 and 2 are
hashed respectively. When hash select equates to two, the previous data re-enters the
hashing module and goes through the hashing algorithm again. As soon as the
SHA-256 algorithm is run again, halt is asserted to signify that no hashing is currently
being conducted. If the hash is valid, valid hash is asserted and it is put on the output
line bus.

12 / 56

3.2.1.3 Hashing Module RTL Diagrams
3.2.1.3.1 Hash Selection RTL Diagram

Figure 6: Hash Selection RTL Diagram

Table 4: Hash Selection Area Estimation Table

Component Type # of
Gates/Flip-Flops

Area
(um^2)

Description

Nonce
Increment

3-bit Full adder 12 9000 8 bit flex counter

Hash Select 512- bit 2-way
Multiplexer

2048 1536000 Combinational Logic

The Hash Selection block essentially serves as a 512-bit 2-way multiplexer and can
increment the nonce value. The hash_select signal determines which hash to send out
as the input_data. This determines whether the block sends the first chunk of data or
the second. The multiplexer will ultimately equate to roughly 2048 gates, or
approximately 15360000 um^2 in terms of area. The nonce increment is a 3-bit full
adder which roughly comprises of 12 gates. This block will take about 9000 um^2.

13 / 56

https://www.draw.io/#G0BwSK0URAVqH3b0ZfOGtJcWNhOVk

 3.2.1.3.2 SHA-256 RTL Diagram

Figure 7: SHA-256 RTL Diagram

Table 5: SHA-256 Area Estimation Table

Component Type # of
Gates/Flip-Flops

Area
(um^2)

Description

W – Full
Adders

Combinational 4608 * 8 = 36864 27648000 W – Full Adders

Byte Registers Register 4096 8192000 Byte Registers

Compression
Full Adders

Combinational 224 168000 Compression Full Adders

The SHA-256 block serves as the most space consuming aspect of our design. The
block that calculates w, is just a series of full adders that ultimately contribute to roughly
27648000 um^2, with eight hashing modules. In addition, 8 hashing modules will
produce around 4096 byte registers and 224 compression adders. These components
take 6144000 um^2 and 168000 um^2 of space respectively. A major area of potential
optimization arises from the w calculations.

14 / 56

https://www.draw.io/#G0BwSK0URAVqH3bGtjZm1FRDlmdnc

3.2.1.3.3 Check Hash RTL Diagram

Figure 8: Check Hash RTL Diagram

Table 6: Check Hash Area Estimation Table

Component Type # of
Gates/Flip-Flops

Area
(um^2)

Description

Comparator Combinational 256*8 = 2048 1536000 Comparator Block

15 / 56

https://www.draw.io/#G0BwSK0URAVqH3Nno2SW83ZV9hTzg

3.2.1.4 Hashing Module Controller

The module manages the hashing algorithm by dividing the hashing process into a
series of sequential chunks. A state machine seemed like the ideal tool for a sequential
process such as this.

16 / 56

https://www.draw.io/#G1bvu6RGtTAI8Bzlg38Vbsgtpd48PvNrjA

3.2.2.1 Packet Decoder Block Diagram

Figure 9: Functional Block Diagram for the Packet Decoder

The packet decoder consists of a main state machine, utilizing other derivative decoder
modules and storage modules. In addition, the main state machine requires a timer
block to count the number of bytes to write. The timer block receives a cnt_up signal
from the main decoder state machine, which serves as a count enable for the counter,
and is used throughout the state machine. The state machine will read the contents of
the rx_data in the usb interface, and store them into an array of registers, represented in
the diagram as block storage. The i_data_sel signal selects where in memory to store in
every byte. The difficulty decoder takes in the target difficulty and performs a
mathematical operation to determine the number of leading zeros, or the difficulty of the
block. The new_block signal from the state machine signals the difficulty decoder to
load a new target_difficulty from the block storage. The chunk decoder takes in the
bytes stored in the block storage and sends blocks of the hash in sections to the hash
module. It also implements nonce in the second chunk before sending the block to the
hashing module.

17 / 56

https://www.draw.io/#G0BwSK0URAVqH3bUJCcGVxNE1mMU0

3.2.2.2 Packet Decoder State Transition Diagram

Figure 10: Packet Decoder State Transition Diagram

Initially, all the output signals in the packet decoder are zero, indicating the IDLE state.
The next step is to determine the type of USB transaction, a IN or an OUT transaction. If
the signal is a IN transaction, the decoder asserts the host_ready signal and returns to
IDLE. If the signal is an OUT transaction, then a series of steps results in the data being
written into storage. The first step is to read the PID of the data packet, which can
signify data 0 or data 1. Then the decoder reads the data type which serves as an
interrupt. If the data type is not a hash, the state machine asserts stop_calc and then
returns to idle. If the data type is a hash, it will enable i_data_en and continuously send
data to storage until the data is finished. When all the data has been stored, the state
machine pulses the new_block signal and returns to IDLE.

18 / 56

https://www.draw.io/#G1t09hJXL34uXvRqqncHkAqomYcw4gvQnp

3.2.2.3 Packet Decoder Timing Waveform

Figure 11: Timing Waveform for Packet Decoder

This timing diagram represents the 4 main operations the packet decoder does as it
reads data from the USB module. Packet decoder will make decisions based on the
data the USB receives. The first two diagrams are a description of reading the block
header. The first three bytes it reads determines that the current transfer in and OUT
transfer with the block header data. The next 64 bytes of data is the first chunk of the
block header. Not shown here is a second bulk transfer that sends the last 16 bytes of
data. Once all of the data is read in then the new block flag will trigger for one cycle,
telling the main controller a block is ready.

19 / 56

The third waveform is an interrupt packet. The decoder will read in the 3 bytes of data to
determine that it is an interrupt packet and will then trigger the stop_calc signal to tell
the main to stop all hash calculations.

The last diagram shows how a transmission packet is read by the decoder. For this
waveform the decoder needs to only read the first byte of the packet to determine that
this packet will require a transmission and will send the host_ready signal to the main
controller. This signal will allow the main to send back either a correct hash for the block
header or an empty packet, signifying that a hash has not been found yet.

3.2.2.4 Packet Decoder RTL Diagrams
3.2.2.4.1 Decoder State Machine RTL Diagram

Table 7: Packet Decoder Area Estimation Table

Component Type # of
Gates/Flip-Flops

Area
(um^2)

Description

State Counter Register w/
Reset

4 8000 4 bit to decode 9 states

Output Logic Combinational 10 10000 Combinational Logic

Next State
Logic

Combinational 10 10000 Combinational Logic

The decoder block is just a simple state machine with 11 states. In order to implement
this state machine, a 4 bit state counter register is required, combined with an output
and next state combinational block. Referencing previous labs, these combinational
blocks contain roughly 10 gates. It is assumed that a flip-flop takes a minimum of 1000
um^2 and these values are doubled in order to allow for routing and wiring.

3.2.2.4.2 Timer RTL Diagram

Table 8: Packet Decoder Timer Area Estimation Table
Component Type # of

Gates/Flip-Flops
Area
(um^2)

Description

7 bit flex
counter

Combinational 90 90,000 7 bit flex counter

20 / 56

3.2.2.4.3 Block Storage RTL Diagram

Figure 12: Block Storage RTL Diagram

Table 9: Block Storage Area Estimation Table

Component Type # of
Gates/Flip-Flops

Area
(um^2)

Description

Decoder Combinational 640 480,000 4 bit to decode 9 states

Register
Memory

Register 640 960000 An array of registers to store
bytes of data

This design will take a significant portion in terms of size. The decoder involves roughly
640 gates and the array of registers will contain 640 registers. Assuming that a register
without a reset and gate will have an area of 900 and 500 um^2 respectively, and that
these values are doubled to account for routing, the decoder and the array will take up
480,000 and 960,000 um^2 respectively.

21 / 56

https://www.draw.io/#G1dsng2pT7AC4yd5l6Gb5qmd895L0gn8Os

3.2.2.4.5 Chunk Decoder RTL Diagram

Figure 13: Chunk Decoder RTL Diagram

Table 10: Chunk Decoder Area Estimation Table

Component Type # of
Gates/Flip-Flops

Area
(um^2)

Description

Flex Counter Register w/
Reset

100 100000 8 bit flex counter

Output Logic Combinational 10 10000 Combinational Logic

Next State
Logic

Combinational 10 10000 Combinational Logic

The Chunk Decoder will either utilize chunk_1 or chunk_2 depending on hash_select.
One input to the multiplexer is chunk_1 which is 512 bits and the other input is chunk_2
which is 128 bits. Zeroes and ones will be appended to chunk_2 to make it 512 bits
wide and the end a flex counter will be used to add 8 to the nonce. The Chunk Decoder
takes up approximately 120 gates giving a grand total of 90,000 um^2 for the area
estimate.

22 / 56

https://www.draw.io/#G1a_sLf3nYm-uoWAk6jUjle_EEzHopBJOI

3.2.2.5.1 Hash Separator RTL Diagram

Figure 14: Hash Separator RTL Diagram

Table 11: Hash Separator Estimation Table

Component Type # of
Gates/Flip-Flops

Area
(um^2)

Description

Hash
Separator
Multiplexer

Combinational 1088 816000 19 way 16-bit Multiplexer

Counter Combinational 64 48000 5 bit flex counter

This block takes a valid out_hash calculated by the hashing modules and writes it into
the USB tx_data when read_enable is high. Read enable will enable the counter here
19 times order to write the hash, nonce, a sync byte and the proper PID which make up
an entire USB packet. This is done with a large 19 way 16-bit wide multiplexer and a
simple flex counter as the select line to pick which word to write to the transmitter shift
register

23 / 56

https://www.draw.io/#G15bawMfbu4AqTV9k8VnYMGr3QKQSNQtk3

3.2.3.1 USB Interface Block Diagram

Figure 15: USB Receiver Interface Block Diagram

The USB consists of two lines, d+ and d-,which are inverses of each other. Both of
these lines must go through a synchronizer in order to ensure a stable output. The d+
line goes through the edge detect, decode, and EOP detect blocks. The edge detect
block just recognizes a transition in d+, and sends that signal to the receiver timer and
the controller state machine. The decode block serves as the NRZi decoder and outputs
the data serially from d+. It sends this information to the receiver shift register, which
pushes the data into the block storage within packet decoder. The EOP detect block
also takes in the d- line and asserts a EOP signal when both d+ and d- are held low,
signifying an end of packet. This block sends this signal to the decoder and to the USB
controller. The USB controller state machine takes in the signals and outputs the correct
signals to a variety of blocks. A more comprehensive description of the state machine
can be found in section 3.2.3.2.

24 / 56

https://www.draw.io/#G1jPVkOX1Csf2kkZDwhba-bZrnPG9fWyqO

Figure 15: USB Transmitter Interface Block Diagram

Packet decoder handles sending data to the transmitter, which takes in data from
another module and pushes it through a parallel to serial shift register to obtain a serial
signal tx_out. This signal is then encoded through the NRZi encoder to obtain
d_plus_out and d_minus_out. The transmitter is dependent on the block storage in
packet decoder which stores all the data. The decoded output goes through the check
CRC block and go through a linear feedback register with xor gates. The two types of
CRC include CRC5 and CRC16, represented by the polynomials x^5 + x^2 + x^0 and
x^16 + x^15 + x^2 + x^0 respectively.

25 / 56

https://www.draw.io/#G17KpYTKcycryrgwoi4TBRIQFvGYcRWTaD

3.2.3.2 USB Controller State Transition Diagram

Figure 16: State Transition Diagram for USB Receiver Controller

If the d+ line has a rising edge transition, as represented by the d_edge signal, the bus
is receiving data to write. The signal receiving is asserted at this state and stays high till
an end of packet. As soon as a byte has been received, the state machine transitions to
the next state. The sync byte is checked at this stage. If the data does not match the
sync byte, then an error signal is asserted and the machine goes back to idle. If the data
does match the sync byte, the state machine progresses. In the PID_WAIT state, an
eop signal also takes the machine to the error state. A byte received signal with not an
end of packet allows it to progress. The signal write_enable is asserted in the
PID_DONE state and goes low in RCVING state and it will continue to the next state
when another byte_received with no end of packet is encountered. The last thing that
happens to complete the receiving cycle is to go through a cyclic redundancy check
(CRC). CRC is a final check to ensure that all the non-PID fields and data packets do
not encounter any errors during transmission. Afterwards, goes into the EOP_WAIT
state and waits for another rising transition in the d+ line.

26 / 56

https://www.draw.io/#G0B90ei1MOFE5dNlV4a1ZhbTcwdGs

Figure 16: State Transition Diagram for USB Transmitter Controller

If the transmit_start or transmit_empty signal is asserted while the current state is IDLE
the transmission begins. While on this path, transmitting is set to one and remains one
until the state becomes IDLE again. Load enable is turned on for a pulse so the data
can be loaded. Afterwards, tx_enable is pulsed to transmit data. Then the READ state is
looped 5 times if transmit_empty was asserted or 34 times if transmit_empty was
asserted. Once data_sent is asserted, the CRC is checked and until an entire byte is
sent. After the CRC is checked for bit stuffing, an end of packet is created and
transitions back to IDLE.

27 / 56

https://www.draw.io/#G1EHW3Ok3KOzroJ4pOanpzMvxy-jQlGEhW

3.2.3.3 USB Interface Waveform Diagram

Figure 17: USB Interface Waveform Diagram

The first timing diagram describe how a USB decodes the lines d-plus and d-minus into
0’s and 1’s. NRZi decoding involves the transitions of the data line rather than the
current value. When a transition is detected, the corresponding decoded state is a zero.

28 / 56

If no transition is detected, the state is represented as a one. In order to ensure that the
clock does not drift too much, a zero is inserted after six consecutive ones. This
condition is denoted as bit stuffing. The second timing diagram illustrates a token packet
followed by a data packet. Both packets begin with a sync byte which synchronizes the
clock. When acting as a receiver, write enable is pulsed every time a byte is received.
When the USB bus is acting as a transmitter, tx_enable is asserted high as soon as the
first byte of the data packet is received. In addition, load_enable and read_enable is
pulsed initially at the same instance that tx_enable is asserted, and every consecutive
byte till the end of packet. The third waveform image is from the top level test bench
which illustrates a token out packet. The token packet consists of a sync byte, an out
PID, the device address and endpoint, the CRC5, and an EOP. This packet signifies
that a data packet will be received, which begins with a sync byte, the data, and an eop.
In response, the USB transmitter will send an ack packet.

29 / 56

3.2.3.4 USB Interface RTL Diagrams
3.2.3.4.1 Edge Detect RTL Diagram

Figure 18: Edge Detect RTL Diagram

Table 12: Edge Detect Estimation Table

Component Type # of
Gates/Flip-Flops

Area
(um^2)

Description

D_plus_sync
Register

Register w/
Reset

1 1500 Register to store the value of
d_plus_sync

X-OR Gate Combinational 1 750 X-OR gate to detect transitions

The edge detect component represents a very small portion of the design. It merely
consists of a register and an X-OR gate. The size of a flip-flop and gate was assumed to
be 1000 um^2 and 500 um^2 respectively and the size was doubled to allow for greater
estimation of error after routing is included.

30 / 56

https://www.draw.io/#G0B90ei1MOFE5dYkxPVXZkenBxUEk

3.2.3.4.2 End of Packet (EOP) Detect RTL Diagram

Figure 19: EOP RTL Diagram

Table 13: EOP Estimation Table

Component Type # of
Gates/Flip-Flops

Area
(um^2)

Description

Nand Gate Combinational 1 750 NOR gate to identify the state
where d_plus_sync and
d_minus_sync are both low,
signifying an end of packet

The end-of_packet (EOP) detector consists of a single NOR gate that takes two signals
as an input. The size of a gate was assumed to be 500 um^2 and the size was doubled
to allow for greater estimation of error after routing is included.

31 / 56

https://www.draw.io/#G0B90ei1MOFE5dVnBNNExSSWVWR3M

3.2.3.4.3 Decoder RTL Diagram

Figure 20: Decoder RTL Diagram

Table 14: Decoder Estimation Table

Component Type # of
Gates/Flip-Flops

Area
(um^2)

Description

Shift enabled
multiplexer

Combinational 1 750 2:1 Multiplexer with enable,
shift_enable.

D_plus_sync
Register

Register w/
Reset

1 1500 Stores the value of the output
of the shift enabled multiplexer

X-NOR Gate Combinational 1 750 X-NORs the current and
previous states of d_plus_sync

Final decoded
output
multiplexer

Combinational 2 1500 2:1 Multiplexer with enable,
shift_enable && eop.

The decoder consists of an initial 2:1 multiplexer that outputs the value of d_plus_sync
into a register. Then additional combinational logic is implemented in order to decode
the value. The total area of this block is relatively small. The size of a flip-flop and gate
was assumed to be 1000 um^2 and 500 um^2 respectively and the size was doubled to
allow for greater estimation of error after routing is included.

32 / 56

https://www.draw.io/#G0B90ei1MOFE5dTy04MnlPeERNVlE

3.2.3.4.4 USB Controller Finite State Machine (FSM) RTL Diagram

Table 15: USB Controller Estimation Table
Component Type # of

Gates/Flip-Flops
Area
(um^2)

Description

State Counter Register w/
Reset

4 6000 4 bit to decode 9 states

Output Logic Combinational 10 7500 Combinational Logic

Next State
Logic

Combinational 10 7500 Combinational Logic

The USB controller is a finite state machine, so the block consists of three components:
a state counter register, an output logic block, and a next state logic block. There are
thirteen states to the controller, so a 4 bit register is required. The estimation for the
output and next state logic was referenced from previous labs.

33 / 56

3.2.3.4.5 Timer_RX RTL Diagram

Figure 21: Receiver Timer RTL Diagram

Table 16: Receiver Timer Estimation Table

Component Type # of
Gates/Flip-Flops

Area
(um^2)

Description

Shift Enable
Flex Counter

Combinational 50 37500 4 bit flex counter is roughly 50
gates

Combinational
Logic Block

Combinational 2 1500 Inverter and AND gate to
represent output

Byte_received
Flex Counter

Combinational 50 37500 4 bit flex counter is roughly 50
gates

Bit stuffing Flex
Counter

Combinational 50 37500 4 bit flex counter is roughly 50
gates

The timer_RX block is represented by multiple flex counters with a combinational logic
block to assign the correct value of shift_enable. Each of the two 8 bit flex counters
roughly consist of 120 gates, whereas the 6 bit flex counter, accounting for bit stuffing,
roughly contains 90 gates. The combinational block is simple as it consists of two gates:
an AND gate and an inverter.

34 / 56

https://www.draw.io/#G1QXtiRUe1IAGxi4PmZi8d0fIpG5PJIF1z

3.2.3.4.6 Timer_TX Diagram

Figure 22: Transmitter RTL Diagram

Table 17: Transmitter Estimation Table
Component Type # of

Gates/Flip-Flops
Area
(um^2)

Description

Shift Enable
Flex Counter

Combinational 50 37500 4 bit flex counter is roughly 50
gates

Byte_received
Flex Counter

Combinational 64 48000 5 bit flex counter is roughly 64
gates

Transmit
Empty
Multiplexer

Combinational 1 750 Counter value determination

The timer_TX block is similar to the timer_RX block, with less components. This design
only contains two flex counters chained together. One 4 bit counter connected to a 5 bit
counter. These counters consist of 50 and 64 gates respectively.
The timer counts up to 34 and 5 depending on whether transmit_empty is enabled or
not. When transmit_empty is high that means we must send a packet telling the host we
are not ready with a valid hash and we transmit 5 bytes with only one byte of data.
When transmit_empty is low we are transmitting 34 bytes of data to send a hash packet
which is 32 bytes of data and 2 bytes of some metadata.

35 / 56

https://www.draw.io/#G1oLD_dnrV-TiREiGVWddKXQh5Nnu0A_2x

3.2.3.4.7 Encoder Diagram

Figure 23: Encoder RTL Diagram

Table 18: Encoder Estimation Table

36 / 56

https://www.draw.io/#G19PlJhIXV7QmzAMc0UHMKQRQOiEgnAy4K
https://www.draw.io/#G0B90ei1MOFE5db2htQlZiUUFjcUk

Component Type Gates/Flip-Flops Area
(um^2)

Description

Tx_hold Flex
Counter

Combinational 50 37500 4 bit flex counter is roughly 50
gates

Tx_out
Multiplexer

Combinational 1 750 2:1 multiplexer to select tx output

Tx_out
Register

Register w/
Reset

1 1500 Storing the value from the
multiplexer output

Output Logic
Block

Combinational 5 3750 Outputs the encoded data in the
USB data bus.

D_plus_out
Register

Register w/
Reset

1 1500 Stores the value for D_plus_out

Inverter Combinational 1 750 Inverts the d_plus_out

The biggest portion of this design is the 6 bit flex counter, accounting for roughly 90
gates. Most of the design is simple register and combinational logic, consisting of
multiplexers, storage registers, and an inverter. There is an output logic combinational
block that will assign the correct values to the USB data line.

37 / 56

3.2.4.1 Main Controller State Transition Diagram

Figure 24: State Transition Diagram for Main Controller

The main controller synthesizes a large portion of logic connecting the USB interface,
the packet decoder, and the hash module. The controller can be represented as a finite
state transition diagram, as shown above. The initial IDLE state enumerates the varying
necessary output signals, with all but quit_hash initialized to zero. The main controller
manages different transmit signals: transmit empty, transmit ack, and transmit nack.
Transmit empty will tell the USB to transmit an empty packet, whereas transmit ack and
transmit nack lead to a transmission of ack or nack packets, respectively, The main
controller will stop the calculation of the hash if it receives an interrupt signal.
Furthermore, the main controller is also responsible for beginning the hashing process
and signifying the end of the hashing algorithm.

3.3 Design Timing Analysis

Top 5 most critical paths Estimate

Table 19: Core Area Estimation Table
Starting
Component

Propagation
Delay (ns)

Combinationa
l Logic

Propagation
Delay (ns)

Ending
Component

Setup Time or
Propagation
Delay (ns)

Total Path
Delay (ns)

Target Clock
Period (ns)

ABC registers
in SHA-256

0.4 Hashing
function
for-loop 2

63.84 ABC registers
in SHA-256

0.2 64.44 10

38 / 56

https://www.draw.io/#G0B90ei1MOFE5dNzVlR3g0TURvVEk

Input_data
from hash
selection

0.4 Set up of w
based on
input data
and random
hashed
values

15.84 W data inside
SHA-256

0 15.84 10

Out_Hash 0.4 Hash
Separator
mux

2.8 Tx_sr in USB
interface

.2 4.08 10

Input Data
Storage

0.4 Difficulty
Decoder

2.4 Target
difficulty

0 2.8 10

USB Tx_out
Register

.4 Output logic
used

.5 USB
D_plus_out
Register

.2 1.32 10

3.3.1 Path descriptions:

1. These are the components of the delay:
a. 64-way 32-bit wide mux = 10 gates: 10 * 0.2ns = 2ns
b. 4 32-bit full adders:

i. Code:
1. temp1 := h ​+​ S1 ​+​ ch ​+​ k[i] ​+​ w[i]
2. e := d ​+​ temp1

ii. Each full adder has 64 gate critical path: 64 * 0.2 ns = 12.8 ns
iii. Total: 4 x 12.8 ns: 51.2 ns

c. Propagation and setup time for flip-flops: 0.6 ns
d. Wire and capacitive load is 53.8 ns * 1.2 = 63.84
e. With setup and propagation time = 64.44

This is the main constraint to our entire design and is the core of the calculation in the
hashes. This is how we set the overall time constraint for our design as it allows us to
calculate up 500,000 hashes per second. This could be reduced if the adders used are
not ripple-carry but are instead carry-lookahead adders. We are not sure if this is
possible in verilog currently.

2. These are the components of the delay:
a. 2 32-bit full adders:

i. Code:
1. w[i] := w[i-16] ​+​ s0 ​+​ w[i-7] ​+​ s1

ii. Each full adder has 64 gate critical path: 12.8 ns
iii. Total with capacitive load = 15.36 ns

b. 2 XORs
i. Code:

1. s1 := (w[i-2] rightrotate 17) xor (w[i-2] rightrotate 19) xor (w[i-2]
rightshift 10)

ii. Each xor: 0.2ns
iii. The rightrotate just involve re-wiring, so no propagation delay

39 / 56

iv. Total with capacitive load: 0.48ns
c. Total: 15.84ns

This path is not from register to register because it is only combinational logic that needs
to be done before other calculations can be made. Currently we are just giving this
portion one clock cycle to complete instead of adding it to the first timing path so that it
doesn't increase the first path’s timing analysis.

3. Difficulty calculation
This consists of a 24-bit barrel shifter to compute a variable number of bit shifts

based on the input data. There are a total of 110 2-1 multiplexers in this barrel shifter but
there is a depth of log​2​(24), or 5 when rounded up. 5 multiplexers of propagation with
each one taking 2 gates this is a propagation time of 2 nanoseconds and when
accounting for capacitance this is 2.4 ns. Well under our desired clock time. There is no
output register for this calculation because this data also just needs to be ready once the
output data is ready from the first timing path.

 4. Hash Separator
This separator is using a 19-way 16 bit mux to select which of these bytes

it needs to write to on the transmit line. This can be accomplished by 7 tiers of 8-bit
2-way muxes. Each mux would take 2 gates to propagate through and all 7 tiers would
take 14 gates in total. With capacitance loading and setup times this adds up to 4.08 ns
of total delay. This is well under the timing constraints.

 5. USB tx_out
This timing path is just through some of the most complicated portion of the USB

interface module. Most of this module is sequential and does not have large timing
paths. This path was included to show that nothing in USB will be a big timing constraint
for our design. This path in particular goes through the output logic of the main state
machine inside of the USB controller and is a rough estimate of the number of gates that
it will need to go through.

40 / 56

3.3.2 Actual Timing Analysis vs Estimate

The actual critical path that the compiler recognized was from the current state register in our
main controller through the selection blocks in packet decoder that determine which chunks will
be the input to the hashing module. The data that was selected is then propagated through to
the ABC registers in SHA-256. This is the critical path that we predicted during our estimation.
Our estimate forgot to take into account the signals that select that data initially but this is still
the same path.It takes significantly shorter than we estimated originally because we gave the
compiler a compilation target of 10 ns to meet when designing this block. In the report file
(Bitcoin_miner/reports/bitcoin_miner.rep), the timing analysis for that path was estimated to be
at 9.97 ns. This seems close to the actual clock rate of 10 ns but in reality the design does not
come close to hitting that much delay. The process in which this path is used is given extra
clock cycles because it must wait for other data to be ready. Whenever we change the chunk
from the main controller, the hash controller waits an extra initialization state to load in the new
data before doing any calculations on this, this was necessary anyway to make the design work
regardless of the critical path. This was the only path that got close to the 10 ns cut off and
shows that we met our target clock period of 10 ns we set out for.

41 / 56

3.4. Area Estimation
Table 20: Hash Separator Estimation Table

Core Area Calculations

Name of
Block /
Module

Category Gate/FF
Count

Area (um^2) Area
(mm^2)

USB
Interface

Mixed 869 1043250 1.04325

Packet
Decoder
Module

Mixed 2646 2786000 2.786

Hashing
Module

Mixed 49388 47929000 47.929

Total Core
Area

 52903 52525500 52.5255

Total Chip
Area

 54573657.2 54.5736571

42 / 56

3.5. Estimated Area vs Actual Area

Figure 25: ​Design Layout

Area: 8728 um^2 x 8665 um^2 = 75.63 mm^2
The actual design layout was larger than expected, considering the synthesized design
estimated it at 22 mm^2. A large portion of this project involved rewiring and obtaining
the correct data representation. In order to change the form of the data, such as
switching from little to big endian, modules were required to accomplish this task, which
was uncounted for originally. In addition, wiring took a lot more space than expected, as
the synthesized design estimated a size of 22mm^2 compared to the actual size of
75.63 mm^2, implying that the wiring and physical component placement took about 3.5
times the estimated value. We used an assumption that the wiring would be about 2
times the estimated values, and set our design criteria using that information. Also
because of the size of the input data to the hashing module (512 bit), any small
conditional statements, lead to huge increases in area. For example, if we forgot to
count one if statement in that block, it would result in a 512-bit multiplexer taking up to
2048 gates and ~2 mm^2 of area. These small adjustments added up and pushed our
design over our limit for the area

43 / 56

4. Success Criteria
4.1.1 Fixed Criteria

1. (2 points) Test benches exist for all top-level components and the entire design.
The test benches for the entire design can be demonstrated or documented to
cover all of the functional requirements given in the design specific success
criteria. ​(COMPLETED)

2. (4 points) Entire design synthesizes completely, without any inferred latches,
timing arcs, and, sensitivity list warnings.​ (COMPLETED)

3. (2 points) Source and mapped version of the complete design behave the same
for all test cases. The mapped version simulates without timing errors except at
time zero. ​(COMPLETED)

4. (2 points) A complete IC layout is produced that passes all geometry and
connectivity checks. ​ (COMPLETED)

5. (2 points) The entire design complies with targets for area, pin count, throughput
(if applicable), and clock rate. The final targets for these parameters will be
determined by course staff based on your design review. Failure to reach any of
the targets will result a score of 1 out of 2 provided that you are within 50% on
area, 10% on pin count, and 25% on throughput. Doing worse in any category
will result in a score of 0 out of 2. ​(COMPLETED)

a.) Area: 55 mm^2
b.) Pinout: 6 (2-pin USB and power, clock, reset, and ground)
c.) Clock Period: 10 ns

4.1.2 Design Specific Success Criteria
1. (2 points) Demonstrate by simulation of Verilog test benches that the Bitcoin

Miner design is able to successfully find a valid nonce for a block and returns a
hashed header. The nonce value can be confirmed by utilizing an online SHA256
calculator. ​(COMPLETED)

2. (2 points) Demonstrate by simulation of Verilog test benches that the Bitcoin
Miner design is able to hash a block header via (SHA-256)​2​ algorithm.
(COMPLETED)

3. (2 point) Demonstrate by simulation of Verilog test benches that the Bitcoin Miner
design is able to receive an interrupt packet and halt the computation.
(COMPLETED)

4. (1 point) Demonstrate by simulation of Verilog test benches that the Bitcoin Miner
design is able to receive a block packet via bulk transfer USB. ​(COMPLETED)

5. (1 point) Demonstrate by simulation of Verilog test benches that the Bitcoin Miner
design is able transmit a hashed packet via USB. ​(COMPLETED)

44 / 56

4.2. Explanation of Success Criteria
4.2.1. Fixed Criteria

1. See appendix for file names and locations for all test benches created for
verification of existence

2. The log folder containing the verification of no latches is in the directory
“mg138/Bitcoin_miner/docs/bitcoin_miner.log”

3. This fixed criteria was proven during the demonstration with Dr. Johnson and
Mochen. Running sim_full_source and sim_full_mapped from our included
makefile will also demonstrate this fixed criteria.

4. Refer to images in “mg138/Bitcoin_miner/docs/bitcoin_miner/bitcoin_layout.png”
and “mg138/Bitcoin_miner/docs/bitcoin_miner/connectivity.png” for screenshots
regarding the design layout and connectivity issues. The layout was generated
on Yash Bharatula’s (mg137) account, which is why there are no layout
generation files in the mg138 main folder.

5. See section 3.5 for discussion regarding estimated area and actual area. See
section 3.3.2 regarding the timing analysis of our top level file​.

45 / 56

5. Design Verification
5.1 Design Verification Overview

Table 21: Design Verification Plan
What to Verify Design Module

Involved
Verification Procedure

Summary
DSSC(s) Proved Comments

Find a valid nonce
and return valid
hash header
successfully

Hash Module &
Packet Decoder

Compare hash output
and nonce values of
certain blockchains as
described in the official
bitcoin website:
https://blockchain.info

DSSCs
1 & 2

All values in a
blockchain header
with the correct
nonce values of all
transactions are
provided on this
website

Correctly hash a
block header via
(SHA-256​)​2

algorithm

Top Level Compare output with
known output hash from
the given block: this
can be acquired from
the same website the
block came from
(​https://blockchain.info​)

DSSC 2 Choose block
header from the
website and
compare our
algorithm’s output
to the title of the
block.

USB interface
successfully
receives an
interrupt packet
and halts
computation

Top Level Interrupt packet test
(check process of
hashing once interrupt
signal is asserted)

DSSC 3 Test bench sends
an interrupt and
main controller
sends an interrupt
signal to the hash
module

USB interface
correctly receives a
block packet via
bulk transfer

USB Receiver
Module &

USB
Transceiver

Selector

Compares received
block with the actual
block values
Check CRC of that data
with crccalc.com

DSSC 4 The test bench will
send the data and
then compare the
received
information with
what was sent

Successfully
transmit a valid
hashed packet via
USB

USB Transmitter
Module & Hash

Separator &
USB

Transceiver
Selector

Test bench sends valid
hashed header

Check CRC of that hash
with crccalc.com

DSSC 5 The test bench will
provide a valid
hash to the Hash
Separator and then
validate the
transmitted output

46 / 56

https://blockchain.info/
https://blockchain.info/

5.2 Test Scenario Breakouts
Find Valid Nonce & Return Valid Hash Header

● Test Bench Expectations/Requirements:

○ Represent data from block # 100,000 on blockchain.info in the correct
format: ensure appropriate endianness, order of bits, etc. to make sure
that the input for the hashing module gets the data in the expected format

○ Transmit the input block via USB to the receiver
○ Then use the waveform explorer to verify that the miner found the correct

hash at the right time
● Main Verification Test Steps:

1. Download the data from Block 100,000 (including prev hash, merkle root,
difficulty, nonce, etc.)

2. Ensure the data is in the correct format, call the flip_endian task
appropriately so that the input matches up correctly for what the hashing
module expects

3. Select a nonce value slightly lower than the required nonce
4. Send the packet via USB to the receiver and store it in packet decoder
5. The hashing module will begin calculating the current header
6. The nonce is initially incorrect and will be incremented by the packet

decoder and hashing module
7. Onec the nonce is correct the valid hash flag will be set high and we can

verify that it is indeed correct
● Proof of verification

Please refer to figure 26 for all description of test bench waves.
The screenshot below is of the hashing module showing it compute 16 invalid hashes
until it calculates one valid one. The initial test input to this module was the 640 bit block
header,
640'h0100000050120119172a610421a6c3011dd330d9df07b63616c2cc1f1cd00200000000006657a9252aacd5c0
b2940996ecff952228c3067cc38d4885efb5a4ac4247e9f337221b4d4c86041b002b5710,
This header is almost a valid header but the nonce portion of this header is the last 32
bits, 0x002b5710. The correct nonce should be 0x0f2b5710. In our test bench you can
see the initial nonce in the red circle is loaded with 0x002b5710. Then 16 rounds of
(SHA-256)^2 are computed. This is shown by the 16 hash_done and begin hash signals
being pulsed high. Then at the end the valid_hash_flag is set high, shown in the orange
circle. At that time the out_hash register stays at its current value and you can see in
the blue circle that the valid nonce 0x0f2b5710 is the nonce register. This nonce can be
confirmed to be the true nonce of block #100,000 by going to the website
blockchain.info and seeing the nonce is 274148111. That number is 0x0f2b5710 when
converted to hexadecimal and written in little endian. It is too long to be seen on the
waveform but in the out_hash register is also the correct hash,
000000000003ba27aa200b1cecaad478d2b00432346c3f1f3986da1afd33e506​.

47 / 56

https://blockchain.info/block/000000000003ba27aa200b1cecaad478d2b00432346c3f1f3986da1afd33e506

Figure 26: Incrementing Nonce and finding a valid hash test

Hash Block Header via (SHA-256)​2 ​Algorithm

● Test Bench Expectations/Requirements:
○ Input block header number #100,000
○ Read output Hash

● Main Verification Test Steps:
1. Refer to blockchain.info and block #100,000 for valid input block header of

0x0100000050120119172a610421a6c3011dd330d9df07b63616c2cc1f1c
d00200000000006657a9252aacd5c0b2940996ecff952228c3067cc38d48
85efb5a4ac4247e9f337221b4d4c86041b002b5710

2. The corresponding output header should be
0x​000000000003ba27aa200b1cecaad478d2b00432346c3f1f3986da1afd3
3e506

As shown in the screenshot in figure 26, the input to the block is the same as block
100,000 on the bitcoin blockchain. The 2 yellow boxes on the left show the header cut
up into 2 512 bit chunks written in little endian. The second chunk is padded according
to the SHA algorithm. The screenshot also shows that three main tasks in the middle.
This because the (SHA-256)^2 algorithm for a block header takes 3 rounds of SHA. 2
for the input header which much be split up and another one for the second round of
SHA. at the end of the three rounds the correct out hash is shown on the out_hash bus
for this block. Both the input and output can be double checked via the website
blockchain.info or any other blockchain tracking website.

48 / 56

https://blockchain.info/block/000000000003ba27aa200b1cecaad478d2b00432346c3f1f3986da1afd33e506
https://blockchain.info/block/000000000003ba27aa200b1cecaad478d2b00432346c3f1f3986da1afd33e506

Figure 26: ​Hash Block Header via (SHA-256)​2 ​Algorithm

USB Interface Receives an Interrupt Packet & Halts Computation

● Test Bench Expectations/Requirements:
○ Test vector containing interrupt packet

● Main Verification Test Steps:
1. Emulates interrupt packet from test vector
2. Checks status of calculation
3. The purple circle in the figure below represents the data packet and the

yellow circle is the transmitted ack packet. The hash done signal will keep
asserting, signaling that the hashing algorithm is working. This signal
stops once the interrupt signal is asserted, signifying a halt in computation.
When the interrupt signal is pulsed high, the hashing module stops
hashing the data.

49 / 56

Figure 27: ​Interrupt halts hash calculation
USB Interface Receives Block Packet via Bulk Transfer

● Test Bench Expectations/Requirements:
○ Valid hashed header sent on data line
○ Sample Crc5 bytes: 101101000001010111101111,

100001110011101000111101
○ Sample Crc16 data:

11000011000000001000000001000000110000001111011101011110,
11010010110001001010001011100110100100010111000000111000

○ Sample crc data comes from “CYCLIC REDUNDANCY CHECKS IN USB”
○ Represent data from block # 100,000 on blockchain.info in the correct

format: ensure appropriate endianness, order of bits, etc. to make sure
that the input for the hashing module gets the data in the expected format

● Main Verification Test Steps:

1. Send sample crc5 bytes
2. Check if the correct crc was obtained
3. Send sample crc16 bytes
4. Check if the correct crc was obtained
5. Send in consecutive blocks and verify crc via online crc calculator.
6. Verify that crc check is asserting at the correct time.
7. The token packet is represented by the initial red circle in timing waveform

in figure 27. The transmitted ack packet is represented by the other red
circle. The data in the receiving line between these two packets is the data
packet containing the block header

Figure 27: USB Receiving Block Packet via Bulk Transfer

Transmit Valid Hashed Packet via USB

● Test Bench Expectations/Requirements:
○ Valid hashed header sent on data line
○ Sample Crc5 bytes: 101101000001010111101111,

100001110011101000111101

50 / 56

○ Sample Crc16 data:
11000011000000001000000001000000110000001111011101011110,
11010010110001001010001011100110100100010111000000111000

○ Sample crc data comes from “CYCLIC REDUNDANCY CHECKS IN USB”
○ Represent data from block # 100,000, #99,999, and #100,001 on

blockchain.info in the correct format: ensure appropriate endianness,
order of bits, etc. to make sure that the input for the hashing module gets
the data in the expected format

○ Connect Transmitter to USB Receiver to make make process of sending
large amounts of data simpler.

○ Data sent:
00000000000080b66c911bd5ba14a74260057311eaeb1982802f7010f1a9
f090h9bcc8940,
000000000003ba27aa200b1cecaad478d2b00432346c3f1f3986da1afd33e
50610572b0f,
000000000002d01c1fccc21636b607dfd930d31d01c3a62104612a171901
1250380388B2

● Main Verification Test Steps:
1. Send in sample CRC data to verify that the transmitter is transmitting the

correct checksum
2. Sending in blocks and concurrently check if the transmitter is receiving the

correct data using a fork.
3. Test Bench verifies that the correct data is being transferred.
4. See document at

“mg138/ece337/Bitcoin_miner/docs/tb_USB_tx_top_level TestBench
Results” for verification of the checking script.

Figure 28: USB Transmitting Hashed Packet

51 / 56

6. Project Management
Per member list of major design component/module responsibilities:

1. Michael: Packet Decoder, Main Controller, Hashing Module
Michael primarily developed the hashing module and the main controller. In

addition, he was able to help debug most aspects of the design when the final design
top level file was being tested. He implemented the test benches for his assigned
modules.

2. Chinar: USB Receiver, USB Transmitter
Chinar helped develop the USB receiver and USB transmitter modules, creating

the initial diagrams and helping debug the code. She also created test benches for
multiple blocks within different modules to ensure foundational functionality.

3. Yash: USB Receiver, USB Transmitter, Packet Decoder
Yash primarily developed the USB receiver and transmitter modules, creating the

test benches associated with them. He was also able to debug most aspects of the
design when testing the final design top level file.

4. Rahul: Hashing Module, Packet Decoder
Rahul worked on the hashing module with Michael. He created multiple helper

functions which served to be very useful in testing and creating other modules. He also
helped create Packet Decoder.

52 / 56

7. Appendix A
7.1 Verilog Code Structure and Test Benches
All verilog source code files and test benches can be found in:
mg138/ece337/Bitcoin_miner/source

7.1.1) Main Controller & Overall Top Level (Bitcoin Miner)
Top Level: bitcoin_miner.sv
Top Level Test Bench: tb_bitcoin_miner.sv

Other top level files that do not have sub modules

● main_controller.sv
● USB_transceiver_selector.sv

○ tb_USB_transceiver_selector.sv
● PD_hash_separation.sv

○ tb_PD_hash_separation.sv

7.1.2) Hashing Module
Top Level:HM_top_level.sv
Top Level Test Bench: tb_HM_top_level.sv

Component Files:

● HM_SHA_256.sv
● HM_bus_select.sv
● HM_check_hash.sv
● HM_controller.sv
● HM_hash_selection.sv
● HM_timer.sv

Other testbenches:

● tb_HM_SHA_256.sv

7.1.3) Packet Decoder
Top Level: PD_top_level.sv
Top Level Test Bench: tb_PD_top_level.sv

Component Files:

● PD_block_storage.sv
● PD_chunk_decoder.sv
● PD_controller.sv

53 / 56

● PD_hash_separation.sv
● PD_timer.sv
● PD_top_level.sv

Other testbenches:

● tb_PD_block_storage.sv
● tb_PD_chunk_decoder.sv
● tb_PD_hash_separation.sv

7.1.4) USB Receiver Files
Top Level: USB_rx_top_level.sv
Top Level Test Bench: tb_USB_rx_top_level.sv

Component Files:

● USB_sync_high.sv
● USB_sync_low.sv
● USB_eop_detect.sv
● USB_edge_detect.sv
● USB_decoder.sv
● USB_crc_16.sv
● USB_crc_5.sv
● USB_crc_rx.sv
● USB_rx_controller.sv
● USB_rx_counter.sv
● USB_timer_rx.sv
● USB_rx_sr.sv

Other test benches:

● tb_USB_rx_controller.sv
● tb_USB_timer_rx.sv
● tb_USB_crc_16.sv
● tb_USB_crc_5.sv
● tb_USB_decoder.sv

7.1.5) USB Transmitter Files
Top Level: USB_tx_top_level.sv
Top Level Test Bench: tb_USB_tx_top_level.sv

54 / 56

Component Files:
● USB_tx_controller.sv
● USB_tx_sr.sv
● USB_timer_tx.sv
● USB_crc_tx.sv
● USB_encoder.sv

Other Test Benches:
● tb_USB_encoder.sv
● tb_USB_timer_tx.sv

7.1.6 Other Helper Files:

● flex_counter.sv
● flex_counter_fix.sv
● flex_pts_sr.sv
● flex_stp_sr.sv
● Flip_endian.sv

7.2 Report Files
Reports for all top level modules are included in mg138/ece337/Bitcoin_miner/reports
folder.

7.3 Datasheets
The only datasheets we used are referenced in our references section. These included
USB standard packet descriptions and SHA-256 pseudocode and test vectors.

55 / 56

References

USB Made Simple. (2008). [Online] Available at:

http://www.usbmadesimple.co.uk/index.html​.

“Block #100000,” ​Blockchain​, 29-Dec-2010. [Online]. Available at:

https://blockchain.info/block/000000000003ba27aa200b1cecaad478d2b00432346

c3f1f3986da1afd33e506

A. Isakov, ​Online CRC Calculator​, 2015. [Online]. Available at: ​http://www.crccalc.com​.

“CYCLIC REDUNDANCY CHECKS IN USB,” ​USB.org​. [Online]. Available at:

http://www.usb.org/developers/docs/whitepapers/crcdes.pdf​.

“Cryptographic Standards and Guidelines,” ​NIST​, 29-Dec-2016. [Online]. Available:

https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-val

ues​.

“Hash Functions,” ​NIST​, 04-Jan-2017. [Online]. Available:

https://csrc.nist.gov/Projects/Hash-Functions​.

56 / 56

http://www.usbmadesimple.co.uk/index.html
https://blockchain.info/block/000000000003ba27aa200b1cecaad478d2b00432346c3f1f3986da1afd33e506
https://blockchain.info/block/000000000003ba27aa200b1cecaad478d2b00432346c3f1f3986da1afd33e506
http://www.crccalc.com/
http://www.usb.org/developers/docs/whitepapers/crcdes.pdf
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://csrc.nist.gov/Projects/Hash-Functions

